Friday, April 19, 2013

Smart Skin

From the Georgia Tech Newsroom - -

Researchers at the Georgia Institute of Technology are developing a novel technology that would facilitate close monitoring of structures for strain, stress and early formation of cracks. Their approach uses wireless sensors that are low cost, require no power, can be implemented on tough yet flexible polymer substrates, and can identify structural problems at a very early stage. The only electronic component in the sensor is an inexpensive radio-frequency identification (RFID) chip.

Moreover, these sensor designs can be inkjet-printed on various substrates, using methods that optimize them for operation at radio frequency. The result would be low-cost, weather-resistant devices that could be affixed by the thousands to various kinds of structures.

"For many engineering structures, one of the most dangerous problems is the initiation of stress concentration and cracking, which is caused by overloading or inadequate design and can lead to collapse – as in the case of the I-35W bridge failure in Minneapolis in 2007," said Yang Wang, an assistant professor in the Georgia Tech School of Civil and Environmental Engineering. "Placing a 'smart skin' of sensors on structural members, especially on certain high-stress hot spots that have been pinpointed by structural analysis, could provide early notification of potential trouble."

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.